
Tyler Scott Craig Thomas

Evans School of Public Affairs University of Washington

The Effect of Collaborative Partnerships on Inter-organizational Networks

Theoretical Rationale

- The policy literature now contains well-developed theoretical frameworks that describe:
 - Inter-organizational networks (Provan and Kenis 2008; Klijn et al. 2010)
 - Collaborative governance (Ansell and Gash 2008; Emerson et al. 2012)
- There is much less work on the nested relationship between collaborative governance and networks (Margerum 2011)

Theoretical Rationale

- Collaboration sometimes happens spontaneously, but it is often the product of purposeful effort by policy makers (Ansell & Gash 2008; Koontz, et al. 2004)
- The creation of collaborative partnerships can therefore be viewed as a policy tool for altering the structure and function of service delivery networks
- In order to use collaborative groups effectively as a policy tool, evidence is needed about the impacts of collaborative groups on network ties

Theoretical Rationale

- We know a lot about how collaborative groups affect network ties amongst group members (e.g., Lubell 2004):
 - Enhance learning/information sharing (e.g., Leach et al. 2013)
 - Foster trust amongst members (e.g., Lubell 2007)
 - More comprehensive/creative policies and practices (e.g., Connick and Innes 2003)
- We know little about the marginal impact of a new collaborative group on network ties overall (Lubell et al. 2010):
 - How does a collaborative group change an existing network?
 - When is support for new collaborative groups redundant?
 - What are the group mechanisms for network change?

Research Design

- Case: Puget Sound region, Washington State
 - State legislature forms state agency, "Puget Sound Partnership" (PSP) to promote collaboration
 - The PSP initiates and/or sponsors 34 local and regional collaborative groups for environmental protection
 - However, many collaborative groups already existed in the region
 - Our sample frame: 1000 individuals who are members of 34 PSPsponsored and 23 other collaborative groups in Puget Sound region
- Online survey instrument to generate data on:
 - Type and extent of group participation
 - Perceived effects of group participation
 - Different types of organizational network ties (e.g., planning vs. joint implementation)

Data and Analysis

- 400 responses (40% response rate), 226 unique organizations
- OLS cannot be used because data are relational (i.e., not independent)
- We therefore use Exponential Random Graph Models (ERGMs) to conduct organizational network
 - Simulate thousands of hypothetical network graphs based upon observed characteristics of our network data
 - Compare observed network to simulated distribution
 - Fit parameters to model dependencies amongst observations
 - Estimate probability of observing a network tie between two organizations (observed value 0 or 1, much like a logit model)

- Hypothesis 1: Shared group activity level with a given organization is positively related to the likelihood of reporting a network tie with that organization.
- Policy implication: Does state sponsorship and support of a collaborative group actually enhance network ties among members of the group?
- How we test: Measure 7 types of group participation (e.g., attend group meetings), and assign each pairwise combination of organizations a shared participation score based upon membership and participation level
 - Score: No Shared Activity → 0, Limited Shared Activity → 1-7, Moderate Shared Activity → 8-14, Significant Shared Activity → 15+

	Model 0	exp(<i>βi</i>)	Model 1	exp(<i>βi</i>)
(Structural Parameters)				
edges	-4.87***	0.01	-4.78***	0.01
mutual	2.50	12.18	2.21	9.12
Twopath	-0.07*	0.93	-0.07*	0.93
Ctriple	-0.02	0.98	-0.39	0.68
GWIDegree (<i>a</i> =ln(2))	-3.89***	0.02	-3.58***	0.03
GWODegree (<i>a</i> =ln(2))	-0.34	0.71	-0.01	0.99
GWESP (λ =2)	1.14**	3.13	0.99***	2.69
(Covariates)				
# of Responses from each Organization	0.21*	1.23	0.17^{*}	1.19
# of Group Memberships	0.02	1.02	-0.03	0.97
Shared Group Activity Level (0 to 3)			1.03***	2.80
Bayesian Information Criterion (BIC) :	4201.5		3994.1	

One-category increase in shared group activity (e.g., none to limited) increases the probability of a network tie by 180%, everything else held constant.

- Hypothesis 2: Participation in external collaborative groups (i.e., those that are not initiated or supported as part of a statesponsored network intervention) decreases the effect of comembership in a state-sponsored group on the likelihood of reporting a network tie with another member of a statesponsored group.
- Policy implication: When is further support for collaborative groups redundant? Do additional groups make a difference?
- How we test: (1) Test interaction of shared participation score for pre-existing groups and shared participation score for PSP-sponsored groups; (2) Test extent to which membership in any pre-existing group mitigates effect of shared participation in PSP-sponsored group.

	Model 3	Model 4	Model 5
(Structural Parameters)			
edges	-5.16***	-5.21***	-5.23***
mutual	2.04	1.70	1.36
twopath	-0.06	-0.04	-0.04
ctriple	-0.03	-0.28	-0.28
GWIDegree (a=ln(2))	-3.64***	-3.70**	-3.96**
GWODegree (<i>a</i> =ln(2))	-0.02	0.07	0.09
GWESP (λ =2)	1.01***	0.97*	1.01***
(Covariates)			
# of Responses from each Organization	0.18**	0.15	0.14
# of Non-PSP Groups	-0.01	0.01	-0.01
Non-PSP Shared Group Activity Level	0.67**	0.73*	0.97*
PSP Shared Group Activity Level	0.96***	1.25**	1.44**
# Non-PSP Groups * PSP Shared Group Activity Level		-0.03	
Non-PSP Shared Activity Level * PSP Shared Activity Level			-0.55
BIC:	3977.8	3958.1	3929.7

• Insignificant, but negative effect:

 $\exp(-0.03) = 0.97$

 An increase of one non-PSP group decreases predicted impact of shared activity in PSP group by 3%

	Model 3	Model 4	Model 5
(Structural Parameters)			
edges	-5.16***	-5.21***	-5.23***
mutual	2.04	1.70	1.36
twopath	-0.06	-0.04	-0.04
ctriple	-0.03	-0.28	-0.28
GWIDegree (<i>a</i> =ln(2))	-3.64***	-3.70**	-3.96**
GWODegree (<i>a</i> =ln(2))	-0.02	0.07	0.09
GWESP (λ =2)	1.01***	0.97*	1.01***
(Covariates)			
# of Responses from each Organization	0.18**	0.15	0.14
# of Non-PSP Groups	-0.01	0.01	-0.01
Non-PSP Shared Group Activity Level	0.67**	0.73*	0.97*
PSP Shared Group Activity Level	0.96***	1.25**	1.44**
# Non-PSP Groups * PSP Shared Group Activity Level		-0.03	
Non-PSP Shared Activity Level * PSP Shared Activity Level			-0.55
BIC:	3977.8	3958.1	3929.7

• Insignificant, but negative effect:

 $\exp(-0.55) = 0.58$

 A one category increase in shared non-PSP group activity decreases predicted impact of shared activity in PSP group by 42%

- Hypothesis 3: Organizations that report an increase in principled engagement and capacity for joint action stemming from their participation in a collaborative group are more likely to report a network tie with other group members.
- Policy implication: What should collaborative groups strive to be/create? (e.g., information-sharing forum? "meet-andgreet"?)
- How we test: Are organizations that report that their group participation has increased their *principled engagement* or *capacity for joint action* with other organizations more likely to report a network tie with another group member?

Principled Engagement

- (1) increased their awareness of the interests and values of other organizations
- (2) increased the amount of face-to-face communication they engage in with other organizations
- (3) increased their understanding of commonly used language in the field
- Capacity for Joint Action
 - (1) increased awareness of and/or access to scientific, technical, or policy-specific information
 - (2) increased access to human resources such as administrative support or IT services
 - (3) increased access to financial resources such as grant opportunities

	Model 6	Model 7	Model 8
(Structural Parameters)			
edges	-5.70***	-5.87***	-5.55***
mutual	-2.36	-3.15*	-2.14*
twopath	-0.07***	-0.07	-0.07***
ctriple	-0.19	-0.18	-0.22
GWIDegree (<i>a</i> =ln(2))	-4.12***	-3.66***	-4.40***
GWODegree (<i>a</i> =ln(2))	0.01	0.19	0.01
GWESP (λ =2)	0.74***	0.81***	0.79*
(Covariates)			
# of Responses from each Organization	0.22*	0.23***	0.23***
# of Group Memberships	0.01	-0.01	-0.02
Shared Group Activity Level	-0.01	-0.03	0.05
Face-to-Face Communication	1.72***		
Awareness of Interests and Values		1.81***	
Understanding of Common Language			1.82***
BIC:	2046.0	2030.9	2124.8

- Highly significant, positive:
 - exp(1.72) = 5.58exp(1.81) = 6.11exp(1.82) = 6.17
- One scale-point increase increases likelihood of tie with other group member by 458% to 517%

	Model 9	Model 10	Model 11
(Structural Parameters)			
edges	-5.55***	-5.38***	-5.48***
mutual	-2.82*	-0.82	-1.98*
twopath	-0.07***	-0.06***	-0.03***
ctriple	-0.23	-0.10	-0.10
GWIDegree (a=ln(2))	-3.85***	-4.77***	-4.90***
GWODegree (<i>a</i> =ln(2))	0.18	0.34	0.36
GWESP (λ =2)	0.81***	0.87***	0.75****
(Covariates)			
# of Responses from each Organization	0.19***	0.16***	0.15*
# of Group Memberships	-0.01	-0.01	-0.01
Shared Group Activity Level	-0.09	0.34***	0.16
Access to Information	1.82***		
Access to Human Resources		1.95***	
Access to Financial Resources			1.79***
BIC:	2022.6	2475.4	2276.9

- Highly significant, positive:
 - exp(1.82) = 6.17exp(1.95) = 7.03exp(1.79) = 5.99
- One scale-point increase increases likelihood of tie with other group member by 499% to 603%

Discussion

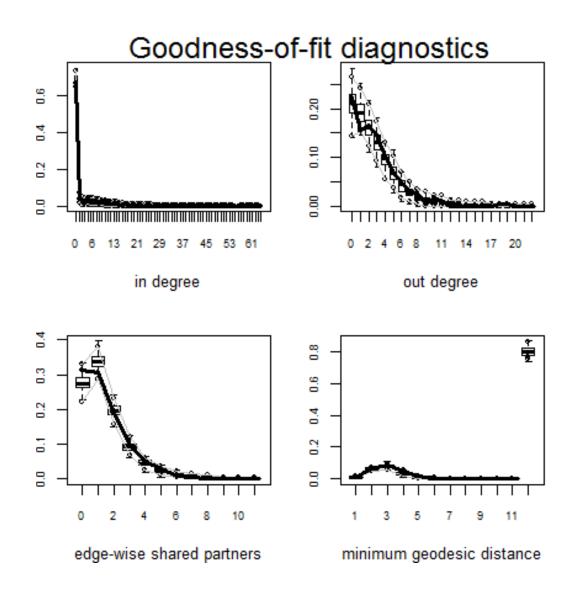
- Reject null for <u>Hypothesis 1</u>: Collaborative groups do appear to influence network structure and function, as shared group activity level is highly predictive of network ties.
 - By strategically involving specific organizations and motivating participation in group activities, policy makers can enhance collaboration amongst network organizations
- Fail to reject null for <u>Hypothesis 2</u>: Unable to demonstrate diminishing returns to collaborative group support.
 - But, estimates are negative, as we hypothesize
 - Policy-makers should consider whether collaborative groups represent new opportunity, or are redundant and offer less benefit

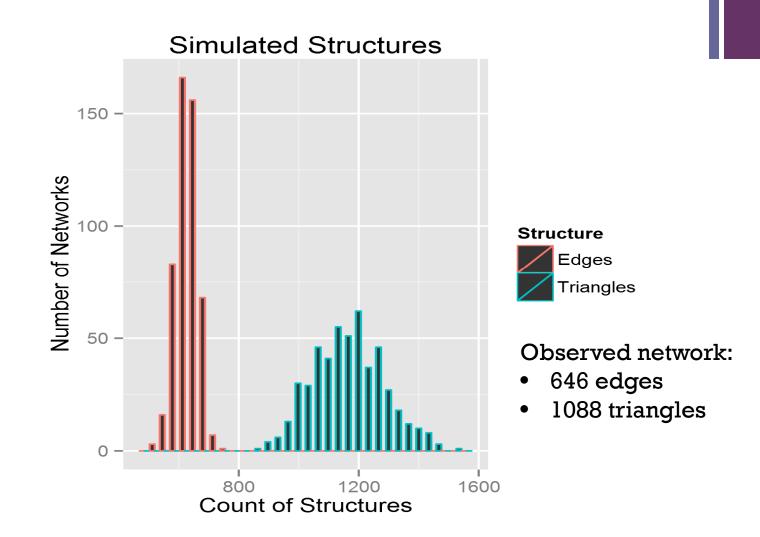
Discussion

- Reject null for <u>Hypothesis 3</u>: Collaborative groups that foster principled engagement and conduct activities that facilitate joint action increase the prevalence of network ties (representing different types of collaborative activity) amongst participating organizations
 - Speaks to causal mechanisms by which state sponsorship of collaborative groups can affect an organizational network
 - Policy makers seeking to foster inter-organizational networks should emphasize building social-capital amongst organizations and helping organizations access resources

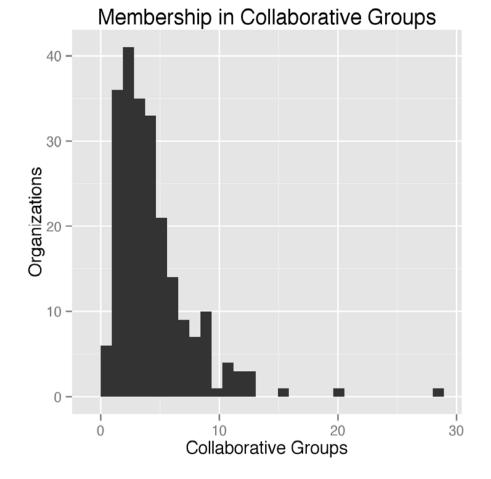
Thank You

Tyler Scott & Craig Thomas


Evans School of Public Affairs University of Washington


Structural Model Term Definitions

Term	Definition	Example (A \rightarrow B if Y _{AB} = 1)
edges	Measure of overall density: reflects baseline probability of a network tie	P(A→B)
mutual	Change in probability if the other organization has already reported a tie between said pair	$\Delta P(A \rightarrow B) B \rightarrow A$
twopath	Reflects number of organizations connected via two edges. Measure of network connectivity.	# structures where $A \rightarrow B \& B \rightarrow C$
ctriple	Reflects number of cyclic triangles. Measure of closure.	# structures where $A \rightarrow B$, $B \rightarrow C$, & $C \rightarrow A$
GWIDegree (<i>a</i> =ln(2))	Weighted distribution of "in-degrees," or ties reported TO an organization (α is weight, which de-emphasizes high-degree nodes)	A is of in degree 2 if $B \rightarrow A \& C \rightarrow A$
GWODegree (<i>a</i> =ln(2))	Weighted distribution of "out-degrees," or ties reported FROM an organization (α is weight, which deemphasizes high-degree nodes)	A is of out degree 2 if $A \rightarrow B \& A \rightarrow C$
GWESP (<i>λ</i> =2)	Geometrically-weighted edgewise shared partners: Weighted distribution of number of shared partners for organizations that share an edge. λ = weight	A and B have 1 edgewise shared partner if $[A \leftarrow B \text{ or } A \rightarrow B] \& [A \leftarrow C \text{ or } A \rightarrow C] \& [B \leftarrow C \text{ or } B \rightarrow C]$


Testing for Model Degeneracy

Distribution of Simulated Structures

Number of Groups by Organization

 Large degree of group participation

 Most respondents participate in AT LEAST two collaborative groups, many a great deal more.

References

Ansell, C., and A. Gash. 2008. "Collaborative Governance in Theory and Practice." *Journal of Public Administration Research and Theory* 18 (4): 543–571.

Emerson, K., T. Nabatchi, and S. Balogh. 2012. "An Integrative Framework for Collaborative Governance." *Journal of Public Administration Research and Theory* 22 (1): 1–29.

Klijn, E. H, J. Edelenbos, and B. Steijn. 2010. "Trust in Governance Networks: Its Impacts on Outcomes." *Administration & Society* 42 (2): 193–221.

Koontz, T. M, J. A Carmin, T. A Steelman, and C. W Thomas. 2004. *Collaborative Environmental Management: What Roles for Government?* RFF Press.

Koppenjan, J. F.M, and E. H Klijn. 2004. "Managing Uncertainty in Networks: a Network Approach to Problem Solving and Decision Making." *London: Routledge*.

Margerum, R. D. 2011. *Beyond Consensus: Improving Collaborative Planning and Management*. Cambridge, MA: MIT Press.

Provan, K. G, and P. Kenis. 2008. "Modes of Network Governance: Structure, Management, and Effectiveness." *Journal of Public Administration Research and Theory* 18 (2): 229–252.

Schneider, M., J. Scholz, M. Lubell, D. Mindruta, and M. Edwardsen. 2003. "Building Consensual Institutions: Networks and the National Estuary Program." *American Journal of Political Science* 47 (1): 143–158.