

The Learning Process and Technological Change through International Collaboration: Evidence from China's CDM Wind Projects

Tian Tang David Popp

Maxwell School
Syracuse University

Research Question

- Research Question: How does the learning process lead to technological change in wind power?
- Technological Change: Reduction in unit cost of wind power
- Learning Process: How the knowledge related to wind power is acquired and diffused among project participants
- Case: China's wind power projects supported by the Clean Developed Mechanisms (CDM)

Background: CDM and China's Wind Industry

• CDM: A project-based carbon transaction mechanism under the <u>Kyoto Protocol</u> that allows <u>developed countries</u> with emission constraints to <u>purchase emission credits</u> by financing projects that reduce carbon emissions in <u>developing countries</u>.

• Goals of CDM:

- Help developing countries reduce carbon emissions
- Stimulate sustainable development in developing countries through technology transfer from developed countries
- The Role of CDM in China's Wind Industry
- China has actively engaged in CDM since 2002 and used it to provide financial support for over 80% of wind projects
- On average, 20% of project revenue comes from CDM

Background: Partnership in CDM Wind Projects

- Highly standardized and transparent project process:
- Project design and financial analysis are validated by 3rd party agencies.
- Project operation is monitored by 3rd party agencies.
- Engage both the public and private sectors of the carbon trading countries, and international organizations

CDM Project hosting country	Central and local government, wind power companies, carbon trade consultants
Emission credits buying country	Central government, investment banks or carbon trading firms
International organizations administering and monitoring CDM process	Executive Board of CDM, 3 rd party validating and monitoring agencies

Theory: Learning Process and Technological Change

 Following the technological learning and collaboration theories, we identify the following channels of learning that could lead to the reduction of electricity production

- Unit of Analysis: CDM wind power project
- Data
- Cross-sectional
- 410 registered CDM wind projects in China that started from 2002 to 2009
- Including 59 developers and 28 turbine manufacturers

Sources:

- 1) Validated CDM project design document and its attached financial analysis spreadsheet for each project
- 2) Yearbook from Chinese Wind Energy Association

Dependent Variable:

Projected unit cost of electricity production of project i started construction in year t, UC_{it}

•Calculation: Life cost/Life electricity production

$$(UC_{it}) = \sum_{t=1}^{n} \frac{Capital_{t} + 0 \& M_{t}}{(1+r)^{t}} / \sum_{t=1}^{n} \frac{E_{t}}{(1+r)^{t}}$$

Explanatory Variables: Learning Effects

LBS _{mft}	Manufacturer's knowledge stock: Cumulative patents related to wind		
LBS	power that the manufacturer has in year t-1		
$\overline{LBD_{mft}}$	Experience from manufacturer: manufacturer's cumulative installed		
	capacities in year t-1		
LBD Experience from project developer in CDM project			
LBD_{dev}	developer's cumulative installed capacities in CDM projects in year t-1		
Snill	Experience from wind projects in a province: Cumulative installed capacities in the province in year t-1		
Spill-			
over Spill _{industry}	Experience from the whole industry: cumulative installed capacities		
	of the whole industry in year t-1		
LBI	Cooperating experience between project developer and		
LBI	manufacturer: cumulative capacities installed by this developer and		
	the same manufacturer in previous CDM projects in year t-1.		

• Full Model:

Manufacturer's knowledge stock $ln(UC_{it}) = \beta_0 + \beta_1 LBS_{mft} + \beta_2 (LBD_{mft} - LBI) + \beta_3 (LBD_{dev} - LBI) + \beta_4 (Spill_{industry} - LBD_{dev} - LBD_{mft} + LBI) + \beta_5 LBI + \beta_6 Turbine_size_i$ Spillover from the industry $+\beta_7 \ Project_{size_i} + \beta_8 W_{1i} + \beta_9 W_{2i} + \beta_{10} W_{3i} + \beta_{11} Domestic_{mft} + \beta_{12} SOE_{dev}$ Wind resource

 $+Province_Dummies + Year_Dummies + u_i$

Descriptive Statistics: Projected Unit Cost of Electricity Production

Empirical Results

Effect of aggregate level experience

 Effect of developer's internal experience v. spillover effects

 Effects of interacting experience and other channels of learning

Empirical Results 1: Aggregate Level Experience

VARIABLES	(1)	(2)	(3)
knowledge stock of manufacturer	-0.0024	-0.00035	-0.00029
	(0.0064)	(0.00030)	(0.00031)
Province level experience	-0.0027	0.00106	-0.00255*
	(0.0144)	(0.01405)	(0.00156)
Industrial level experience	-0.0270**	0.00003**	0.00003***
	(0.0125)	(0.00001)	(0.00001)
Turbine size (MW)	0.0625**	0.03179	0.02932
	(0.0294)	(0.02830)	(0.02874)
Project size (MW)	-0.0772***	-0.54539**	-0.65148***
	(0.0220)	(0.23034)	
Wind category 1	-0.2054***		All loorning variables at
	(0.0239)		All learning variables at
Wind category 2	-0.1486**	0.03598**	the aggregated level are
	(0.0556)	(0.01344)	not statistically or
Wind category 3		0.10483***	economically significant
		(0.03394)	when adding year fixed
Wind category 4	0.0690**	0.10762***	effects.
5 · l	(0.0304)	(0.03219)	C.1.0000.
Year fixed effects	No	Yes	110
Province fixed effects	No	Yes	Yes
Observations	387	387	387
R-squared	0.523	0.659	0.590

Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

Empirical Results 2: LBD and Spillover Effects

VARIABLES	(1)	(2)	(3)	
knowledge stock of manufacturer	-0.00149	-0.00241	-0.00342	
	(0.00249)	(0.00435)	(0.00362)	
Developer's experience in CDM projects	-0.09364**	-0.09840**	-0.14136***	
within one province	(0.04345)	(0.04634)	(0.04626)	
Spillover from other projects in the province	0.01487	0.00532	0.01422	
	(0.04050)	(0.01439)	(0.01603)	
Developer's experience in CDM projects in	-0.01595	-0.02935	-0.03255	
other provinces	(0.02049)	(0.02703)	(0.02495)	
Spillover from the industry	0.00025	0.00032	-0.00001	
	(0.00033)			
Turbine size (MW)	0.03239	The unit co	ost is expected	
	(0.02582)		•	
Project size (MW)	-0.50761**	-0	e by nearly 1%	
	(0.21823)	when the բ	oroject	
Wind category 2	0.05452**	0 developer	o developer develops one	
	(0.02365)	<u>, </u>	ect in the same	
Wind category 3	0.21528***	0	ct in the same	
	(0.03506)	province.		
Wind category 4	0.15095***	0		
	(0.05033)	(0.029302)	(0.02305)	
Year fixed effects	Yes	Yes	No	
Province fixed effects	Yes	No	No	
Observations	387	387	387	
R-squared	0.663	0.504	0.480	

Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

Empirical Results 3: Different Channels of Learning

	(1)	(2)	(3)
VARIABLES		, ,	. ,
knowledge stock of manufacture	-0.00035	-0.00044	-0.00040
<u> </u>	(0.00022)	(0.00031)	(0.00032)
Experience of manufacturer alone	-0.02408	-0.02503	-0.02538
-	(0.01549)	(0.01355)	(0.01436)
Experience of developer alone in	-0.02705	-0.02775	-0.02690
CDM	(0.02684)	(0.02032)	(0.02134)
Cooperating experience in CDM	-0.10539**	-0.10805**	-0.10890**
	(0.04693)	(0.05035)	(0.05035)
Spillover from the industry	-0.00003***	-0.00003***	-0.00004***
	(0.00001)	(0.00001)	(0.00001)
Turbine size (MW)	0.02356	0.02368	0.02484
	(0.02876)	(0.02975)	(0.02823)
Projectl size (MW)	-0.45060**	0.48305**	0.43050**
	(0.21309)	The unit	cost of
Wind category 2	0.05259**		
	(0.02439)	electrici	ty is estimated to
Wind category 3	0.10594***	0 decrease	e around 1%
	(0.03338)	whan th	a project
Wind category 4	0.11363***	₀ when th	e project
	(0.03270)	develop	er cooperates
Domestic manufacturer (dummy)		with the	•
		with the	Sairie
State-owned developer (dummy)		manufac	cturer in one
		more pr	oioct
Domestic* Knowledge_stock		ποιε μι	ojeci.
			(0.00638)
Year fixed effects	Yes	Yes	Yes
Province fixed effects	Yes	Yes	Yes
Obs	387	387	387
R-squared	0.698	0.696	0.696

Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

Key Findings

1. Learning by doing:

Wind project experience is location specific. Project developers mainly learn from their own experience of project developing and operating within province.

2. Learning by interacting:

The interaction between project developer and manufacturer matters, which leads to lower cost of electricity production.

Key Findings

3. Learning by searching:

 The effects of manufacturer's knowledge stock, measured as cumulative patent counts, on cost reduction is both economically and statistically insignificant.

4. Knowledge diffusion:

- Existing literature has suggested that wind power firms can learn from the experience of other firms.
- The results indicate that wind power firms in China mainly learn from their own experience and the knowledge spillovers may mostly occur within certain partnerships.

Policy Implications

For Chinese policymakers:

- Increase understanding of the learning process in China's wind industry
- Help to make more targeted policies to facilitate different channels of learning, especially policies to forge the partnership between project developers and turbine manufacturers

For international climate change policy making:

 Shed light on how the international carbon trade mechanism (e.g. CDM) leads to technological progress in wind power

THANKS!

Questions and comments are appreciated.

Background: CDM and China's Wind Industry

Background: Partnership in a CDM Wind Project

Background: CDM as a Demand-Side Policy for Wind Technology

	Domestic	International
Supply Side	-National basic research program (973 Program, 1997) -National high-tech R&D program (863 Program, 1986) - National key technology R&D program (TKPs, 1982)	
Demand Side	 National wind concession program (2003-2008) Mandatory renewable market share (1997) Power surcharge for wind power (2006) Relief of VAT and import tax for wind turbines (2008) 	Clean Development Mechanisms (CDM)

Contributions to the Literature

	Existing Literature	This Research
Learning process in wind power	Focus on: -Learning through R&D - Learning by doing (Goulder, 2004; Junginger, et al, 2005; Nemet, 2012; Qiu et al, 2012)	-Provide empirical evidence on the learning by interacting effect.- Highlight the importance of
	2003, Nemet, 2012, Qiu et ai, 2012)	partnership and collaboration in technological change
Technological change in China's wind	Qualitative studyConcentrated on domestic policies	-First empirical research on CDM projects
industry	•	- Data improvement on electricity production cost
Collaboration	Concentrated on public service delivery such as welfare program, health, education etc.	Extends empirical study on collaboration to international collaboration on carbon reduction and renewable energy technology diffusion.

Descriptive Statistics: Projected Unit Cost of Electricity Production

